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UIXRAVIOIET SYNTBESIS OF ADENOSINE TRIPHCEPHATE 

UNDER POSSIBIE PRIMITIVE EARTH CONDITIONS 

Cyr i l  Ponnamperumal’*, Carl Sagan3, and Ruth Mariner 1 

Introduction 

It has been suggested that the prebiological synthesis of nucleoside 
phosphates on t he  primitive ear th  was a consequence of the  absorption of 
u l t r av io l e t  l i g h t  by purines and pyrimidines i n  an appropriate aqueous 
medium (Sagan, 1957, 1961b). The basis f o r  t h i s  suggestion i s  as follows: 

Even the  simplest l iv ing  organisms are s t a t i s t i c a l l y  unl ikely aggre- 
gations of organic molecules. 
i s  extracted from the f i e l d  of poss ib i l i t i es  through natural  selection. 
But before the  advent of self-repl icat ing systems, natural  select ion as 
w e  understand it today could have played no such role.  
subsequent repl icat ion of l i f e  must therefore  have involved molecules pre- 
f e r e n t i a l l y  produced i n  the  primitive environment. 
in t h e  ear ly  works of Haldane (1929) and Oparin (1938). 
possible that the  fundamental molecular basis  of l iv ing  systems has itself 
evolved, the  simplest working hypothesis holds that t h e  molecules that are 
fundamental now were fundamental a t  t h e  t i m e  of the  or igin of l i fe .  The 
production of amino acids, purines, pyrimidines and pentose sugars under 
simulated primitive conditions during the  past  decade lends support t o  
t h i s  hypothesis. 

The improbability of contemporary organisms 

The o r ig in  and 

Such a view i s  implici t  
While it is  
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There are, however, s t i l l  several  molecular species whose involve- 
ment i n  the origin of l i f e  remains t o  be demonstrated. Chief among these 
a re  the nucleoside phosphates. Adenosine triphosphate (ATP) i s  the "uni- 
versal" energy intermediary of contemporary t e r r e s t r i a l  organisms, and one 
of the major products of plant photosynthesis. 
i n  primitive times w a s  f irst  emphasized by Blum (1951, p. 168). Guanosine 
triphosphate has recently been implicated as  the energy source for  peptide 
linkage ( see, e .g., Schweet, 1963). The deoxynucleoside triphosphates are  
the precursors f o r  contemporary DNA biosynthesis (Kornberg, 1959). To the  
extent t h a t  t h e  or igin of DNA plays a fundamental ro le  i n  the or igin of 
l i fe ,  the abiogenic synthesis of deoxynucleoside triphosphates seems in-  
dicated (Sagan, 1961b). Several fundamental coenzymes of intermediate 
metabolism and plant photosynthesis (CoA, DPN, TPN, FAD) are nucleoside 
phosphates. A l l  these molecules contain purines or  gyrimidines, which 
have strong ul t raviolet  absorption maxima near 2600 A. The poss ib i l i ty  
then arises tha t  the  absorption of u l t rav io le t  photons by purines and 
pyrimidines provided the  bond energy f o r  the synthesis of nucleoside phos- 
phates i n  primitive times; and it i s  therefore of some in te res t  t o  in -  
vestigate the u l t rav io le t  transparency of the ear ly  terrestr ia l  atmosphere. 

The need fo r  i t s  production 

There i s  astronomical evidence (Kuiper, 1952; Urey, 1952) t h a t  the 
e a r t h ' s  atmosphere was reducing a t  the time l i f e  f i r s t  arose. Laboratory 
experiments have shown tha t  it i s  f a r  eas ie r  t o  synthesize organic matter 
under reducing than under oxidizing conditions (Garrison e t  -- a l . ,  1951; 
Miller, 1957; Abelson, 1956). 
l y  unstable in an excess of hydrogen, and the principal sources of the 
u l t r av io l e t  opacity of the present t e r r e s t r i a l  atuosphere cannot have then 
been present. The u l t rav io le t  absorption t h a t  did ex i s t  arose from in t e r -  
mediate oxidation s t a t e  molecules, pr incipal ly  aldehydes and ketones. I n  
experiments in which e l e c t r i c a l  discharges were passed through simulated 
primitive atmospheres, the only aldehyde or ketone produced i n  high yield 
w a s  formaldehyde (Sagan and Miller, 1960). Nevertheless, the production 
of some acetaldehyde (see, e .g., Ord, 1963) and acetone ,.can be expected. 
Formaldehyde absorption extends longward of abott  2900 A. Acetaldehyde 
and acetone absorb throughout the 2400 t o  2900 A region. Ammonia, ace- 
tylene, and other molecules absorb shortward of 2400 A. Therefore, the 
question of the transparency of the primitive t e r r e s t r i a l  atmosphere near 
2600 A turns mainly on the unknown ea r ly  abundance of CH CHO and CH COCH 
Because of the r e l a t ive ly  low acetaldehyde and acetone yields i n  simulation 
experiments, and because of possible independent biological  indications of 
high ul t raviolet  fluxes i n  primitive times (Sagan, 1961b), it seems l ike ly  
t h a t  the e a r l y  reducing atmosphere w a s  a t  least s l i g h t l y  transparent 
between 2400 and 2900 A .  
integrat ion of the DPlanck function, the u l t rav io le t  f lux  of wavelength 
2900 b: 2- h 2 2400 A incident on the  e a r t h ' s  atmosphere 4 x lo9 years ago 
is computed t o  be about 7 x photons cm-2 sec'l (Sagan, 1961a). Even 
with substantial  atmospheric absorption, u l t rav io le t  radiat ion i n  t h i s  
window w i l l  greatly exceed other energy sources f o r  organic synthesis 
(Miller and Urey, 1961). 

The molecules O2 and O3 are thermodynamical- 

3 '  3 3 

From models of the evolution of the sun, and an 
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The synthesis of purines and pyrimidines which absorb i n  t h i s  wave- 
length region has recently been accomplished i n  a var ie ty  of primitive 
ear th  simulation experiments. Adenine has been produced by thermal poly- 
merization of 1 .5  molar HCN i n  an aqueous ammonia solution (Or6 and 
Kimball, 1961); by 5 &v electron i r radiat ion of methane, ammonia, water 
and hydrogen (Ponnamperuma, L e m m  n, Mariner, and Calvin, 1963); and by 
u l t rav io le t  i r rad ia t ion  of a lo-! molar solut ion of HCN (Ponnamperuma and 
b r i n e r ,  1963b). 
Another guanine synthesis occurs i n  the  thermal copolymerization of amino 
acids (Ponnamperuma, Young, and Mdoz, 1963). 
by heating urea an6 malic acid (Fox zil& ;TT;arada, 1961)= 

Guanine a l so  appears t o  be formed i n  the  last experiment. 

Uracil has been produced 

The yields of purines and pyrimidines a re  sometimes qui te  high. In  
the  electron-beam i r rad ia t ion  o f  primitive atmospheres by Ponnamperuma, 
Lemmon, Mariner, and Calvin (1963) autoradiography indicates t h a t  the 
product produced i n  highest yield is adenine. %us it appears possible 
tha t  u l t rav io le t  l i gh t  passing the 2400 t o  2900 A p a r t i a l  window i n  the 
primitive t e r r e s t r i a l  atmosphere was strongly absorbed by purines and 
pyrimidines i n  the ea r ly  oceans. 

The production r a t e s  of organic molecules from reducing atmospheres 
suggest t ha t  the primitive oceans were about a 1 percent solution of 
organic matter (Urey, 1952; Sagan, 196111). 
pyrimidines the pentose sugars, ribose and 2-deoxyribose, can be expected 
t o  be present. The laboratory production of 2-deoxyribose has been 
achieved through the condensation of formaldehyde and acetaldehyde, or of 
acetaldehyde and glyceraldehyde i n  aqueous salt  solutions (Or6 and Cox, 
1962). (Indeed, t h i s  i s  an example of a mechanism t h a t  keeps the atmo- 
spheric aldehyde concentration low. ) 
been synthesized by e i t h e r  ul t raviolet  o r  gamma i r rad ia t ion  of d i lu t e  
formaldehyde solutions (Ponnamperuma and Mariner, 1963a). 
other phosphorus compounds can be expected i n  the primitive oceans, even 
a t  very ea r ly  times (Rubey, 1951). 

I n  addition t o  purines and 

Both ribose and 2-deoxyribose have 

Phosphates and 

It therefore seems of some interest t o  attempt synthesis of nucleo- 
side phosphates by u l t rav io le t  i r radiat ion of d i lu t e  solutions of purine 
o r  pyrimidine bases, pentose sugars, and phosphorus compounds, both because 
of our expectation t h a t  such syntheses were eas i ly  performed in  primitive 
times, and because u l t rav io le t  i r radiat ion of d i lu t e  solutions of adenine 
and ribose has already produced the nucleoside adenosine (Ponnamperuma, 
Mariner, and Sagan, 1963). 
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Materials and exmrimental techniques 

Adeni11e-8-d~ of specif ic  a c t i v i t y  23.4 pc/mg, aden0s ine -8 -c~~  of 
14 speclf ic  ac t iv i ty  7.2 pc/mg, and adenylic acid-8-C 

3.1 pc/mg were supplied by Schwarz Bioresearch, Orangeburg, New York. 
The nonradioactive AMP, ADP and ATP used as  car r ie rs  were supplied by 
C .  F. Boehringer, Mannheim, Germany. The adenosine tetraphosphate was a 
g i f t  of Dr. John Moffatt of Syntex Ltd . ,  Palo Alto, California.  

of spec i f ic  a c t i v i t y  

The ethyl metaphosphate used i n  the experiment was prepared by d is -  
solving 150 gm of phosphorus pentoxide i n  300 m l  of e thy l  e ther  and re- 
fluxing the  solution f o r  several  hours with chloroform (Schramm e t  a l . ,  
1962). 
leaving a syrupy residue of e thy l  metaphosphate. 

-- 
The excess solvent was removed by evaporation under vacuum, 

The method of i r rad ia t ion  and analysis has already been described 

5 
(Ponnamperuma, Mariner and Sagan, 1963). Quant i t ies  of the  1 beled 
adenine, adenosine, and adenylic acid, varying from 1 . 5  x 
mole i n  various experiments, were sealed i n  aqueous solution i n  vycor 
tubes with approximately stoichiometric quant i t ies  of ribose, phosphoric 
acid or polyphosphate es te r ,  as outlined i n  Table 1. The f i n a l  concen- 
t r a t i o n  of base, nucleoside and nucleotide i n  each solution did not exceed 
loe3 mole per l i t e r .  
v io l e t  germicidal lamps, type 782~- io ,  yhich emit 95 percent of t h e i r  
l i g h t  i n  the HR resonance l ine  a t  2537 A. The vycor glass of which the 
tubes were made transmittea 80 percent of the l i gh t  a t  t h i s  wavelength. 
During a 1-hour i r radiat ion,  the sample absorbed a t o t a l  of - 10 8 ergs .  
During the i r radiat ion the ambient temperature of the samples w a s  40 2OC. 

t o  1 . 5  x 10- 

The solutions were i r radiated by four G .  E .  u l t r a -  

The reaction products were f i rs t  analyzed by paper chromatography, 
autoradiography and u l t rav io le t  absorption s tudies .  
react ion products w a s  spotted on a Whatman N o .  4 paper and the chromato- 
gram run i n  two solvents, butanol-propionic acid-water (Bassham and Calvin, 
1957, p. 1.9) and isobutyric acid-ammonia (Krebs and Hems, 1953). The posi- 
t ions  of the carriers adenosine, AMP, ADP, ATP and A4P were detected by 
shadowgrams (Ponnamperuma, 1962). Coincidence both i n  posit ion and i n  
shape between the car r ie rs  on the shadowgrams and the radioact ivi ty  on the  
autoradiograph was the chromatographic basis  fo r  the ident i f icat ions.  The 
formation of adenosine has already been reported (Ponnamperuma, Mariner, 
and Sagan, 1963). 
vent systems, t r ichloroacet ic  acid-acetone (Burroughs, Grylls, and Harrison, 
1952) and butanol-formic acid-water (Bennet, 1953). 
coincidence between the ca r r i e r  as outlined i n  the shadowgram and the radio- 
a c t i v i t y  on the f i l m .  

An al iquot  of the 

A further aliquot was chromatographed i n  two other so l -  

Once again there w a s  

Separations effected using thin-layer chromatography and ion-exchange 
chromatography confirmed the r e su l t s  obtained from paper chromatography. 
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Re s u l t  s 

The r e su l t s  of the investigation a re  summarized inTab le  1 and in  
Figures 1 through 4. 
formed. In the first the s t a r t i ng  material was adenine, i n  the second 
adenosine, i n  the t h i r d  adenosine monophosphate, and i n  the fourth adeno- 
sine diphosphate. The conversion of adenine t o  adenosine, adenosine t o  
adenosine monophosphate, adenosine monophosphate t o  adenosine diphosphate, 
and adenosine diphosphate t o  adenosine triphosphate has been established. 
Experiments using adenine as the s t a r t i ng  material  have produced adenosine, 

Four different  categories of experiments were per- 

S V Z ,  Am, sild ATP. 

The previously reported experiment showed t h a t  adenosine i s  not pro- 
duced in detectable amounts i n  the absence of a phosphorus compound 
(Ponnamperwna, Mariner, and Sagan, 1963). While adenosine i s  produced i n  
the presence of both phosphoric acid and e thy l  metaphosphate, the nucleo- 
side phosphates were detected only with the use of e thy l  metaphosphate. 
Phosphoric acid was chosen f i r s t  in  the attempt t o  synthesize the nucleo- 
side phosphates. Ethyl-metaphosphate was selected a s  a possible reagent 
because of a recent report  (Schramm e t  -- a l . ,  1962) t h a t  it ac t iva tes  
carbonyl, hydroxyl and amino groups i n  organic synthesis.  Other phosphorus 
compounds may also be e f fec t ive  i n  t h i s  synthesis, but they have not yet 
been investigated.  

The yields are  given i n  Table 1 and are  fur ther  discussed below. 

Controls 

Two general categories of control experiments were performed t o  assess 
two possible modes of biogenic contamination of the reaction products. To 
t e s t  the poss ib i l i ty  t h a t  the re la t ive ly  high temperatures (40 2 O  C )  
a t ta ined  by the vycor tubes during u l t r av io l e t  i r rad ia t ion  stimulated the 
metabolic a c t i v i t i e s  of microorganisms i n  the reactants ,  we placed control 
tubes a t  these same temperatures f o r  comparable periods, but without u l t r a -  
v io l e t  i r rad ia t ion .  
s imi la r ly  t o  the i r radiated samples. In no case was any yield detected. 

In a l l  other respects they were handled and analyzed 

An al ternat ive hypothetical source of contamination is  the presence 
i n  the labeled reactants  of microorganisms which, under u l t rav io le t  ir- 
radiat ion,  are photolyzed, introducing t h e i r  metabolic products in to  the 
medium. To t e s t  t h i s  poss ib i l i ty ,  we introduced i n t o  vycor tubes t h a t  
had been autoclaved for  45 minutes a t  120' C reactants  t h a t  had been 
passed through an autoclaved Seitz f i l t e r .  These s t e r i l e  samples were 
then i r rad ia ted  w i t h  u l t r av io l e t  l ight  and analyzed. 
was observed. We conclude tha t  the microbiological contribution t o  the 
observed yields was negligible.  

No change i n  yield 
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Discuss ion 

The abiogenic nonenzymatic production of nucleoside phosphates and 

The expected ava i l ab i l i t y  of ATP 
re la ted  molecules under simulated primitive ear th  conditions i s  relevant 
t o  the problem of the or igin of l i f e .  
i n  primitive times suggests t ha t  energy was then available i n  convenient 
form f o r  endergonic synthetic reactions of large molecules. The question 
arises why adenosine triphosphate, ra ther  than, fo r  example, the tr i-  
phosphates of guanosine, cytidine, uridine, or thymidine, were not pro- 
duced i n  primitive times and u t i l i zed  today as  the primary biological  
energy currency. There are  several  possible responses. I n  primitive 
ear th  simulation experiments under reducing conditions with l o w  H2 content, 
adenine i s  produced i n  f a r  greater yield than are other purines and pyri-  
midines (Or6 and K i m b a l l ,  1961; Ponnamperuma, Lemmon, Mariner, and Calvin, 
1963; Ponnamperuma and Mariner, 1963b). Secondly, no biological  purine 
or  pyrimidine has a larger  absorption cross-section between 2400 and 2900 A. 
Thirdly, adenine i s  among the most s table  of such molecules under u l t r a -  
v io l e t  i r radiat ion.  Final ly  the u l t rav io le t  exci ta t ion energy i s  readi ly  
transferred,  especial ly  by electrons,  along the  conjugated double bonds 
of the  molecule; the excited states are very long-lived, and thereby serve 
t o  provide bond energies f o r  higher synthetic reactions. All but the f i rs t  
of these properties of adenine derive from the f a c t  t ha t  it has  the 
greatest resonance energy of a l l  the biochemical purines and pyrimidines 
(Pullman and Pullman, 1960, p. 111; Pullman and Pullman, 1962). It thus 
appears t h a t  molecules idea l ly  suited for  the or igin of l i fe  were pre- 
f e ren t i a l ly  produced i n  primitive times. 

The yields achieved i n  these experiments, as shown i n  Table 1, are 
r e l a t ive ly  quite high. I n  contrast, quite elaborate methods are ordinarily 
required f o r  the laboratory synthesis of nucleoside phosphates (Baddiley, 
1955). For the  production of adenosine from adenine, ribose, and a phos- 
phorus source, the quantum yield f o r  a 1-hour i r rad ia t ion  i s  (p - 10-5. 
For production of AMP, ADP, and ATP by the use of e thy l  metaphosphate, 
the  quantum yields are almost an order of magnitude greater .  

It i s  not now known t o  what extent the experiments here reported 
accurately reproduce the environmental conditions i n  the primitive te r -  
res t r ia l  oceans. It can be expected tha t  e thy l  metaphosphate was probably 
not the most abundant phosphorus source, but we do not know how well other, 
possibly more abundant, phosphate salts may e f f i c i e n t l y  subst i tute  f o r  
e thy l  metaphosphate. The i r rad ia t ion  period i n  these experiments was - 1 
hour. Continued i r radiat ion,  with no removal of products, must, by the  
second l a w  of thermodynamics, ult imately r e su l t  i n  lower overa l l  quantum 
yields .  The influence of inorganic anions on the  course and rate of these 
reactions i s  largely unknown. Nevertheless, it is  of some heur i s t i c  
i n t e re s t  t o  compute the  production r a t e  of adenosine triphosphate i n  the 
primitive t e r r e s t r i a l  oceans, were 
in the  present experiments. 

the conditions there  similar t o  those 
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The production r a t e  of ATP i n  the primitive reducing atmosphere w i l l  
then be 

-2 -1 d a - Q  " gm cm sec , Z - T q  

where Q is  the u l t r av io l e t  photon flux f o r  2400 
quantum yield,  p i s  the molecular weight of ATP, and NA is Avogadro's 

number (Sagan, 19hla). 

1961a), '9 - 3 x 

1 2900 1, (p is  the 

sec'' (Sagan, Taking Q - 7 x d4 photons 

and c1 - 550, we derive 

-2 -1 - 5 x 10-=gm cm sec . 
d t  - 

A fee l ing  for the magnitude of t h i s  f igure can be obtained by cam- 
puting the steady-state population of microorganisms over the e n t i r e  globe 
that could be maintained by this quantity of abiological ly  produced adeno- 
sine triphosphate. T h a t  is, we assume i l l u s t r a t i v e l y  that the primitive 
e a r t h  is populated by obligate heterotrophs tht obtain a l l  t h e i r  energy 
frm abiologically syn tks i zed  ATP. W e  w i l l  obtain a m i n i m u m  population 
if w e  assume tha t  the number of ATP molecules required for each rep l ica t ion  
and the doubling t- per c e l l  have values characteristic of t yp ica l  contem- 
porary organisms. Taking values f o r  Eschericia - c o l i  of 10 ATP molecules 
per c e U  f o r  each doubling, and a doubling t i m e  of one hour, we f i n d  the 
required ATP production rate t o  maintain one c e l l  must be 2.5 x ~m 
sec'l cell ' l .  The steady-state population of microorganisms tha t  can be 
maintained over the en t i r e  globe by the abiological  synthesis of ATP is 

This estimate i s  of course 
extremely appraximate. The assumptions that  a l l  the u l t r av io l e t  l i g h t  is 
transmitted by the atmosphere, that it is a l l  absorbed by adenine i n  the 
ocean, and that the quantum yields used in the e thy l  metaphosphate experi- 
ments are appl icabk  t o  the primitive environment probably increase the 
derived steady-state c e l l  population; while tb assumptions that  the ATP 
requiremnt  and doubling time f o r  the primitive organisms are the same as 
f o r  E. c o l i  - probably decrease the derived steady-state c e l l  population dver 
the &ue value. Nevertheless, th i s  calculation does suggest t ha t  abiogenic 
ATP production by u l t r av io l e t  l igh t  i n  primitive times may have supported 
qui te  s izable  populations of microorganisms on th primitive ear th .  

9 
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Such abiogenic production of ATP is, i n  e f f ec t ,  photosynthesis with- 
out l i fe .  
the mechanism of t e r r e s t r i a l  plant photosynthesis is  t h a t  the production 
of ATP i s  the primary, and mo'st primitive, function of the photosynthetic 
apparatus (Amon, 1961, p. 489; Calvin, 1962). The experimental r e s u l t s  
of the present paper permit us t o  understand why t h i s  might be so. With 
ra ther  e f f i c i en t  abiogenic synthesis of so idea l  an energy currency a s  
ATP i n  the primitive environment, the t r ans i t i on  from a reducing t o  an 
oxidizing atmosphere must have had profound r e su l t s .  

One s t r ik ing  conclusion t h a t  has emerged from recent work on 

The t rans i t ion  was a t  l e a s t  p a r t i a l l y  i n t i t i a t e d  by the u l t r av io l e t  
photodissociation of water vapor i n  the high atmosphere, and the select ive 
escape of hydrogen t o  space (Kuiper, 1952; Urey, 1959). The ozone con- 
centrat ion of a planetary atmosphere depends approximately logarithmically 
on the  oxygen concentration, down t o  a cer ta in  lower l i m i t  of the oxygen 
concentration (Marmo and Warneck, 1961; Paetzold, 1963); thus the steady- 
s t a t e  production of even or  of the present O2 concentration 

would have prgduced enough ozone t o  diminish the u l t rav io le t  f l ux  i n  the  
2400 t o  2900 A p a r t i a l  window, and make the r a t e  of u l t r av io l e t  synthesis 
of ATP decline. A premium was then placed on organisms with the a b i l i t y  
t o  u t i l i z e  vis ible  l i gh t  fo r  ATP synthesis. 
of the primitive organisms t o  be so keyed t o  the  ava i l ab i l i t y  of ATP t h a t  
the first vis ible  photosynthetic apparatus evolved would be adopted by a l l  
subsequent l i f e  f orms . 

One can imagine the metabolism 

The precise mechanism of synthesis has not yet been investigated.  
Ultraviolet  exci ta t ion of adenine accounts f o r  the adenosine synthesis, 
but the par t ic ipat ion of phosphorus compounds i n  the reaction is  obscure. 
Synthesis of nucleoside phosphates must be more indirect ,  since it i s  
d i f f i c u l t  t o  imagine the exci ta t ion energy being t ransferred across the 
ribose molecule, which has no conjugated double bonds. Alternative pos- 
s i b i l i t i e s ,  such as  the production of act ivated adenine or  ribose phos- 
phates, remain t o  be investigated.  

Further study of currently unidentified chromatographic features  
should both help c l a r i f y  the mechanisms of synthesis,  and cast  l i g h t  on 
other possible prebiological organic reactions.  Ultraviolet  i r r ad ia t ion  
of solutions of deoxyribose, purines or pyrimidines, and phosphate com- 
pounds may have some relevance fo r  the problem of polynucleotide or ig ins .  

Bio-assay. 
biochemically act ive,  a luminescence assay w a s  p e r f o m d  using dehydrated 
f i r e f l y  tails. 
used. 
Vernon, New York.) 
fluorometer. The decay curve of the luminescence w a s  i den t i ca l  with that 
of an authentic sample of ATP. The concentration of ATP i n  the solut ion 
used, as determined by t h i s  method, corresponded within the limits of 
experirnental error  t o  the value obtained by spectrophotometric measurements. 

To e s t ab l i sh  whether tk ATP synthesized by us w a s  

The method described by St reh ler  and Tro t te r  (1952) w a s  
(Firefly ta i ls  were supplied by Scl-iwarz Bioresearch, Inc., Mount 

The in tens i ty  of luminescence was Easu red  by a Turner 

-8 - 



Summary 

Adenosine triphosphate i s  the pr incipal  energy currency i n  contem- 
porary t e r r e s t r i a l  organisms. 
s i b i l i t y  t h a t  ATP was produced i n  ear ly  times by prebiological organic 
syntheses. We have found tha t  ATP and other nucleoside phosphates can 
be formed i n  high yield under simulated primitive ear th  conditions -- 
e .g., by u l t rav io le t  i r rad ia t ion  of d i l u t e  aqueous solutions of adenine, 
r ibose and e thy l  metaphosphate. 

It is of i n t e re s t  t o  invest igate  the  pos- 
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Figure I.c--Autoradiogram i l lus t ra t ing  the fornation of' AMP from adenine, 
ribose and ethyl  metaphosphate by the action of ul t raviolet  
l ignt 
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Figum 2.--Autoradiogrm i l lus t ra t ing  the formtion of AMP from adenosine 
and ethyl mtaphosphate by the action of ul t raviolet  light. 
The long feature t o  the r ight  of the teardrop-s'haped adenosine 
spot is  adenine, prduced f r o m  adenosine photolysis. The dark 
central feature between AMP and adenosine is at  present 
unidentified. 
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Figure 3 .-- Autoradiogram i l l u s t r a t ing  formation of ADP, ATP and A4P , 
f rm AMP and e thy l  metaphosphate by the ac+ion of u l tmvio le t  l igh t .  
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Figure 4. --Shadowgram i l lus t ra t ing  the formation of ATP from ADP and 
ethyl mtaphosphate by t'ne action of ultraviolet light. 
AMP is a photolytic product. 
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NOTICE 

This series of Special *ports was instituted under the 
supervision of Dr. F. L. Whipple, Director of the Astrophysical 
Observatory of the Smithsonian Institution, shortly af'ter the 
launching of the f irst  a r t i f i c i a l  earth satellite on October 4, 
1957. 
Pirs t  issued t o  ensure the immediate dissemination of data for 
satellite tracking, the Reports have continued t o  pmvide a 
rapid distribution Crp catalogues of satellite obsemtions,  
o rb i t a l  information, and preliminary r e su l t s  of d a t a  analyses 
pr ior  t o  forrml publication i n  the appropriate journals. 
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Edited and produced under the supervision of Mr. E. B. 
Hayes, the &ports are indexed by the Science and Technology 
Division of the Library of Congress, and are regularly dis- 
tributed t o  a l l  institutions participating i n  the US. spece 
research program and t o  individual scientists who =quest t h e m  
fran the Administrative Officer, Technical Information, Smith- 
sadan Astrophysical Observatory, Cambridge 38, Massachusetts. 


